3.371 \(\int \sqrt{\cos (c+d x)} (a+a \sec (c+d x))^3 \, dx\)

Optimal. Leaf size=91 \[ \frac{20 a^3 \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 d}-\frac{4 a^3 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a^3 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{6 a^3 \sin (c+d x)}{d \sqrt{\cos (c+d x)}} \]

[Out]

(-4*a^3*EllipticE[(c + d*x)/2, 2])/d + (20*a^3*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^3*Sin[c + d*x])/(3*d*Co
s[c + d*x]^(3/2)) + (6*a^3*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.194153, antiderivative size = 91, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {4264, 3791, 3771, 2639, 2641, 3768} \[ \frac{20 a^3 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{4 a^3 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a^3 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{6 a^3 \sin (c+d x)}{d \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^3,x]

[Out]

(-4*a^3*EllipticE[(c + d*x)/2, 2])/d + (20*a^3*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a^3*Sin[c + d*x])/(3*d*Co
s[c + d*x]^(3/2)) + (6*a^3*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rule 3791

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Int[Expand
Trig[(a + b*csc[e + f*x])^m*(d*csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0]
 && IGtQ[m, 0] && RationalQ[n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rubi steps

\begin{align*} \int \sqrt{\cos (c+d x)} (a+a \sec (c+d x))^3 \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{(a+a \sec (c+d x))^3}{\sqrt{\sec (c+d x)}} \, dx\\ &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \left (\frac{a^3}{\sqrt{\sec (c+d x)}}+3 a^3 \sqrt{\sec (c+d x)}+3 a^3 \sec ^{\frac{3}{2}}(c+d x)+a^3 \sec ^{\frac{5}{2}}(c+d x)\right ) \, dx\\ &=\left (a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx+\left (a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sec ^{\frac{5}{2}}(c+d x) \, dx+\left (3 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\sec (c+d x)} \, dx+\left (3 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sec ^{\frac{3}{2}}(c+d x) \, dx\\ &=\frac{2 a^3 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{6 a^3 \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+a^3 \int \sqrt{\cos (c+d x)} \, dx+\left (3 a^3\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx+\frac{1}{3} \left (a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\sec (c+d x)} \, dx-\left (3 a^3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{2 a^3 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{6 a^3 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a^3 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{6 a^3 \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{1}{3} a^3 \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx-\left (3 a^3\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{4 a^3 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{20 a^3 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a^3 \sin (c+d x)}{3 d \cos ^{\frac{3}{2}}(c+d x)}+\frac{6 a^3 \sin (c+d x)}{d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 6.20862, size = 479, normalized size = 5.26 \[ \frac{\csc (c) \cos ^3(c+d x) \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \sec (c+d x)+a)^3 \left (\frac{\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right ) \text{HypergeometricPFQ}\left (\left \{-\frac{1}{2},-\frac{1}{4}\right \},\left \{\frac{3}{4}\right \},\cos ^2\left (\tan ^{-1}(\tan (c))+d x\right )\right )}{\sqrt{\tan ^2(c)+1} \sqrt{1-\cos \left (\tan ^{-1}(\tan (c))+d x\right )} \sqrt{\cos \left (\tan ^{-1}(\tan (c))+d x\right )+1} \sqrt{\cos (c) \sqrt{\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}-\frac{\frac{\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right )}{\sqrt{\tan ^2(c)+1}}+\frac{2 \cos ^2(c) \sqrt{\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}{\sin ^2(c)+\cos ^2(c)}}{\sqrt{\cos (c) \sqrt{\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}\right )}{4 d}-\frac{5 \csc (c) \cos ^3(c+d x) \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \sec (c+d x)+a)^3 \sqrt{1-\sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin (c) \left (-\sqrt{\cot ^2(c)+1}\right ) \sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin \left (d x-\tan ^{-1}(\cot (c))\right )+1} \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \text{HypergeometricPFQ}\left (\left \{\frac{1}{4},\frac{1}{2}\right \},\left \{\frac{5}{4}\right \},\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )}{6 d \sqrt{\cot ^2(c)+1}}+\cos ^{\frac{7}{2}}(c+d x) \sec ^6\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \sec (c+d x)+a)^3 \left (\frac{\sec (c) \sin (d x) \sec ^2(c+d x)}{12 d}+\frac{\sec (c) (\sin (c)+9 \sin (d x)) \sec (c+d x)}{12 d}-\frac{(\cos (2 c)-5) \csc (c) \sec (c)}{8 d}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^3,x]

[Out]

Cos[c + d*x]^(7/2)*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*(-((-5 + Cos[2*c])*Csc[c]*Sec[c])/(8*d) + (Sec[
c]*Sec[c + d*x]^2*Sin[d*x])/(12*d) + (Sec[c]*Sec[c + d*x]*(Sin[c] + 9*Sin[d*x]))/(12*d)) - (5*Cos[c + d*x]^3*C
sc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*
x])^3*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x -
 ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(6*d*Sqrt[1 + Cot[c]^2]) + (Cos[c + d*x]^3*Csc[c]*Sec[
c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*
Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqr
t[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c
])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[
Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(4*d)

________________________________________________________________________________________

Maple [B]  time = 2.535, size = 371, normalized size = 4.1 \begin{align*}{\frac{4\,{a}^{3}}{3\,d}\sqrt{- \left ( -2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 10\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+6\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-18\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}\cos \left ( 1/2\,dx+c/2 \right ) -5\,{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-3\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+10\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 4\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}-4\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) ^{-1} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^3,x)

[Out]

4/3*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^3/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)
^2+1)/sin(1/2*d*x+1/2*c)^3*(10*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2
*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+6*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*Elli
pticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2-18*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-5*EllipticF(
cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)-3*EllipticE(cos(1/2*
d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)+10*sin(1/2*d*x+1/2*c)^2*cos(
1/2*d*x+1/2*c))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )}^{3} \sqrt{\cos \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^3*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (a^{3} \sec \left (d x + c\right )^{3} + 3 \, a^{3} \sec \left (d x + c\right )^{2} + 3 \, a^{3} \sec \left (d x + c\right ) + a^{3}\right )} \sqrt{\cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

integral((a^3*sec(d*x + c)^3 + 3*a^3*sec(d*x + c)^2 + 3*a^3*sec(d*x + c) + a^3)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)*(a+a*sec(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )}^{3} \sqrt{\cos \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^3*sqrt(cos(d*x + c)), x)